Skip to main content

Relationship between depression and burnout among nurses in Intensive Care units at the late stage of COVID-19: a network analysis



Mental health problems are critical and common in medical staff working in Intensive Care Units (ICU) even at the late stage of COVID-19, particularly for nurses. There is little research to explore the inner relationships between common syndromes, such as depression and burnout. Network analysis (NA) was a novel approach to quantified the correlations between mental variables from the perspective of mathematics. This study was to investigate the interactions between burnout and depression symptoms through NA among ICU nurses.


A cross-sectional study with a total of 616 Chinese nurses in ICU were carried out by convenience sampling from December 19, 2022 to January19, 2023 via online survey. Burnout symptoms were measured by Maslach Burnout Inventory-General Survey (MBI-GS) (Chinese version), and depressive symptoms were assessed by the 9-item Patient Health Questionnaire (PHQ-9). NA was applied to build interactions between burnout and depression symptoms. We identified central and bridge symptoms by R package qgraph in the network model. R package bootnet was used to examined the stability of network structure.


The prevalence of burnout and depressive symptoms were 48.2% and 64.1%, respectively. Within depression-burnout network, PHQ4(Fatigue)-MBI2(Used up) and PHQ4(Fatigue)-MBI5(Breakdown) showed stronger associations. MBI2(Used up) had the strongest expected influence central symptoms, followed by MBI4(Stressed) and MBI7 (Less enthusiastic). For bridge symptoms. PHQ4(Fatigue), MBI5(Breakdown) and MBI2(Used up) weighed highest. Both correlation stability coefficients of central and bridge symptoms in the network structure were 0.68, showing a high excellent level of stability.


The symptom of PHQ4(Fatigue) was the bridge to connect the emotion exhaustion and depression. Targeting this symptom will be effective to detect mental disorders and relieve mental syndromes of ICU nurses at the late stage of COVID-19 pandemic.

Peer Review reports


Since COVID-19 broke out in Wuhan of China in December 2019, the World Health Organization (WHO) on March 11, 2020 categorized the disease as a worldwide epidemic as global rapidly spreading [1, 2]. People hit by SARS-CoV-2 were more prone to develop acute respiratory distress syndrome (ARDS) or even multiple system organ failure. Studies reported approximately 5–10% of patients diagnosed with COVID-19 were admitted to Intensive Care Units (ICU) for critical care due to the high mortality [3, 4].

With the use of vaccines and the implementation of active epidemic prevention measures in China, the nationwide lockdown policy was ended. China entered the late stage of the COVID-19 pandemic in April 2020, and the China National Health Commission (CNHC) announced to lift most of the restrictions implemented for “Zero-COVID” policy (restricting mass gatherings, maintaining social distancing, and staying at home) on December 7, 2022 [5]. The pandemic of China came to a peak stage again in a short time and the number of COVID-19 patients in the ICUs was increasing rapidly due to high-speed spreading. ICU, unlike other parts of the hospital, are areas where complex and state-of-the-art devices are used and special treatment and care is delivered. Nurses in ICU are the backbones of effective health systems during this pandemic [6]. ICU nurses were confronted with difficult conditions, such as substantial workload, prolonged work hours and considerable risk of infection, which led to serious mental distress [7, 8] and resulted in an increasing risk of psychiatric health problems, such as depression and burnout [9, 10].

Many studies reported that nurses working in ICU showed high risk of depression during the pandemic of COVID-19 [11,12,13]. A cross-sectional survey demonstrated over 40% of ICU nurses suffered from moderate to severe symptoms of depression during COVID-19 [14]. One systematic and meta-analysis including 20,617 healthcare workers proved that the prevalence of burnout in ICU nurses achieved 45% [15]. Burnout and depression of nurses had adverse effects on health of patients, and even threatened the safety of patient (i.e., medical administration errors, injury even death) [16,17,18], which was a global healthcare concern [19]. Besides, the intention to leave work in ICU nurses was rising during COVID-19. The WHO predicted that there would be a deficit of around 7.6 million nurses globally by 2030 before COVID-19 [20]. This deficit seemed likely to be greater as recent research had indicated that about 20% nurses had a thoughtful consideration of quitting for adverse mental health outcomes. Between them, ICU nurses had the highest of nearly 27% [21], which would be detrimental to the sustainable development of the nursing profession. Therefore, efforts should be made to improve the burnout and depression for this important group of care providers.

WHO in 2022 announced the implement of 7th of the International Classification of Disease [22], in which burnout is defined as a syndrome caused by chronic occupational stress that has not been managed successfully, and has resulted in feeling of energy exhaustion, negativism related to one’s work and lack of achievement. Nurse engaging in ICU are particular prone to suffer burnout due to exposure to pain, trauma, dying and closed environments, not necessary within pandemic [23]. Depression is a leading cause of disability and contributes greatly to global burden of disease [24]. People suffered from depression are characterized by persisted sadness, diminished pleasure or interest, even feeling of excessive guilt, hopelessness. Severe depression patients will think of self-harm or suicide [22]. WHO in 2022 has listed depression as one of high-risk factors leading to disability and the major contributor to suicide [24]. Depression not only negatively impact well-being of ICU nurses, but also extract toll on the health industry, with a severe adverse effect on healthcare quality [25, 26].

The relation between burnout and depression has received a great deal of attention in recent years [27, 28]. Burnout was identified as one of strongest predictor of depressive symptoms [29, 30]. Meanwhile, depression symptoms contributed to the development of burnout [31]. But more importantly, burnout often co-occurred with depression [32]. A system review and meta-analysis reported that over 50% employers with burnout had depression [33]. A survey of healthcare workers in Macao and China found that depression was associated with all subscales of burnout after controlling for the strong effects of demographic factors [34]. 16.5% of psychiatric with depressive symptoms had high rate of burnout [35]. These data suggest there exist strong associations between burnout and depression symptoms. But how the symptoms of the two variables are associated still remain unclear.

Altogether, the previous studies have explored the interactions between burnout and depression at the syndrome level using traditional correlational methods, which included path analysis and multiple regression analysis in general. But those methods were based on the assumption of linear relationship, and couldn’t describe the complex non-linear contact between burnout and depression symptoms [36]. In order to overcome the issue, network analysis (NA) was applied to quantify the correlations between burnout and depression symptoms from the perspective of mathematical and display it intuitively. It wasn’t just on the basis of assumptions but a data-driven approach about causality between multiple variables [37]. In the theory of NA, mental syndromes and disorders were induced by the direct interactions between their corresponding symptoms, which included nodes representing observed variables (e.g., 15 nodes of burnout and 10 nodes of depression) and edges representing the associations between nodes. Therefore, exploring the accurate interactions was critical to elaborate psychopathological mechanisms and develop targeted intervention policies. Furthermore, NA could also provide centrality and predictability indices of each node, which helped researchers to identify and quantify to what extent burnout may transmit positive/negative influence to depression [38]. Since central symptoms in a network model closely connected with other symptoms, and they might active other symptoms. Thus, central symptoms with higher ranking score might become the target of treatment interventions, as they had a significant impact on the network. NA provided a new way to understand human psychological phenomena, and had been applied to the research of social psychology, clinical psychology, psychiatry and other fields [39, 40].

Several studies have explored the symptom level interactions between burnout and depression symptoms using NA among different groups of people. Network structure among educational professions demonstrated that suicidal thoughts was only associated with other symptoms of depression, but not with those of burnout [41]. Another study showed that the symptoms of “feel down-hearted” and “no hope for future” were target interventions to relieve mental disorders of pharmacists [42]. However, it was uncertain whether these findings could be generalized to ICU nurses. Therefore, the current study applied the NA to further examine the interrelationship between burnout and depression symptom of ICUs nurses in order to implement effective and targeted interventions to prevent or reduce the occurrence of burnout and depression. The aims of the current study were two-fold: (1) to explore potential pathways linking between burnout and depression symptoms; (2) to use bridge expected influence to identify the most influential symptoms within the burnout-depression network.



A cross-sectional study was conducted among ICU nurses from December, 19 in 2022 to February, 19 in 2023 across six hospitals, which were Grade III-A General Hospitals of Shaanxi province of China. 616 nurses took part in the study. Due to COVID-19 pandemic, face-to-face assessment were not adapted. Following the previous researches during pandemic [43, 44], the WeChat-based “Questionnaire Star” program was applied to conduct online survey. WeChat is a social media for communication, which has been used widely from 2017. The users now have achieved over 1.2 billion in China. Participants met the following inclusion criteria:(1) aged 18 and older; (2) be registered nurses who worked longer than 1 year in ICU; (3) engaged in frontline clinical nursing; (4) cared patients with COVID-19. Participants who were nursing students or had mental or physical disease were excluded from the study to ensure the integrity of the study’s outcomes. The study had met with the approval of the Ethics Committee of the Second Affiliated Hospital of Shaanxi University of Chinese Medicine (No. SZFYIEC-YJ-2020-38). All participants were voluntary to join in this study and signed the informed consent form.

In order to ensure the effectiveness of online survey, we contacted with head nurses of ICU in advance and made them know the inclusion and exclusion criteria of our study clearly before the investigation. Then they send the online survey link to nurses who satisfied the requirements of our study. At last, we checked the answers of all the participants and deleted questionnaires with missing items after the survey. Besides, the participants would get a random lucky money to thank for their participation. A total of 636 nurses completed the survey, and 20 participants missed some items of questionnaire and demographic information. The effective rate was 97%.


Maslach Burnout Inventory-General Survey (MBI-GS) (Chinese version) was used to measure the severity of burnout symptoms [45]. The 15 items of MBI-GS were scored on a seven-point Likert scale from “0” (never) to “6” (every day) capturing three dimensions: emotional exhaustion, cynicism and reduced personal achievement, with higher total scores indicating higher level of burnout. MBI-GS has extensively been applied to assess the mental distress in healthcare workers [46]. A sum score of MBI-GS above 34 was considered as suffering from burnout. The reliability of MBI-GS was evidenced in this study with a Cronbach’s alpha of 0.845. Depression was assessed by Chinese version of Patient Health Questionnaire (PHQ-9), which included 9 items with each scored on a four-Likert scale from “0” (not at all) to “3” (nearly every day). Higher scores of PHQ-9 indicated more severe depression symptoms. PHQ-9 gained strong validity and was widely used in the Chinese population [47]. Clinically relevant symptoms of depression were indicated by total score of 5 or higher on the PHQ-9 [48]. The reliability of PHQ-9 was evidenced in this study with a Cronbach’s alpha of 0.820.

Statistical analysis

Network estimation

The network of burnout and depressive symptoms was constructed by R software [49]. The polychoric correlations (i.e., edges) between all the MBI-GS and PHQ-9 items, were calculated based on the Graphical Gaussian Model (GGM) with the graphic least absolute shrinkage and selection operator (LASSO) and Extended Bayesian Information Criterion (EBIC) mode [50], and the R package qgraph was used to visualize the network model [51]. The edge color of blue indicated that the connection was positive, and red was negative. Besides, the edge thickness and saturation indicated connection strength. The stronger the connection, the thicker the edge, and the more saturated it was. We also calculated the central index expected influence (EI) by R package qgraph to identify the significance of each node in the network [52]. Nodes showing higher EI were considered to be more important in the network model. The bridge expected influence (BEI) of each item was calculated to identify bridge node that linked the burnout and depression in the current study [53], which represented the importance of one symptom linking two clusters of psychiatric symptoms [37]. In addition to, the package mgm was used to check the predictability of each node, which indicated the variance in a node that was affected by other nodes connected to it.

Network stability

In order to estimate the accuracy of the network model, R package bootnet was used to check the stability of EI and BEI [51]. The accuracy of the edge weight value was tested by calculating its estimated confidence interval (95% CI). The stability of IE and BIE were assessed by computing the correlation stability coefficients (CS-C). In general, the CS-C above 0.5 was ideal and should not be below 0.25 [51]. In order to check the difference between edge weights and node expected influence, bootstrapped difference tests were also conducted.


Study sample

A total of 616 ICU nurses completed the study (Table 1). The majority of the participants were female (490, 79%). The mean age was 28.0 ± 8.37 years, and the average number of working hours was 3.2 ± 0.65 years. The prevalence of burnout and depressive symptoms were 48.2% and 64.1%, respectively. Mean scores of the burnout and depression items with their SDs, expected influence, and predictability were shown in Table 2.

Table 1 Demographic characteristics of the participants
Table 2 Average scores of items in burnout and depression network(N = 616)

Network structure

Figure 1 showed the network model of burnout and depression symptoms, and all the edges were positive. In the burnout symptoms, the strongest edge was MBI8 (Doubt significance)-MBI9 (Indifferent), followed by the edges MBI6 (Less interested)-MBI7 (Less enthusiastic) and MBI1 (Exhausted)-MBI2 (Used up). In the PHQ-9 symptoms, the strongest edge was PHQ2 (Sad mood)-PHQ1 (Anhedonia), followed by edges PHQ4 (Fatigue)-PHQ1 (Anhedonia) and PHQ8 (Motor)-PHQ7 (Concentration).

Fig. 1
figure 1

Network structure of burnout-depressive symptoms

In the burnout-depression network, the association between PHQ4 (Fatigue)- MBI2 (Used up) was the strongest, followed by PHQ1 (Anhedonia)-MBI7 (Less enthusiastic), and PHQ4 (Fatigue)-MBI5 (Breakdown) (Table 3). Table 3 showed the strength of each edge. Furthermore, the predictability of each node was showed, ranging from 0.28 to 0.79 with average value of 0.67 (Table 2).

Table 3 Correlation matrix of the burnout and depression items

Network stability

For centrality index expected influence (EI) (Fig. 2; Table 2), the node MBI2 (Used up) had the highest EI value, followed by MBI4 (Stressed), MBI7 (Less enthusiastic), PHQ6 (Guilty) and PHQ4 (Fatigue), implying that these symptoms were the central and influential for effecting the network model of burnout and depression among ICUs, whereas PHQ9 (Suicide) and PHQ3 (Sleep) had lowest EI value, showing marginal effect with the network. For bridge expected influence (BEI) (Fig. 3), PHQ4 (Fatigue) had the highest BEI value, followed by MBI5 (Breakdown), MBI2 (Used up), MBI7 (Less enthusiastic) and PHQ1 (Anhedonia), indicating these symptoms linking the burnout and depression symptoms at the late stage of COVID-19.

The network between burnout and depression showed a high excellent level of stability (Fig. 4). Both CS coefficients of EI and BEI were 0.68, which suggested that when 68% of the sample was dropped, the structure of the network did not change significantly. Supplementary Fig. S1 showed the bootstrapped 95% CI of edges and bootstrapped differences of edge weights, which were narrow and suggested high accuracy. Figure 5 showed the difference test of edge weights. The bootstrapped difference test found the most comparisons between EI were significantly different from the others (Fig. 6).

Fig. 2
figure 2

The node expected influence plot. The X-rays represented the expected influence of each node

Fig. 3
figure 3

The bridge expected influence plot. The X-rays represented the bridge expected influence of each node

Fig. 4
figure 4

The stability of the burnout- depression network

Fig. 5
figure 5

Estimation of edge weight difference by bootstrapped difference test

Bootstrapped difference test for edge weights. The black box indicates that edge weights of the two corresponding variables have a significant difference (P < 0.05). The gray box indicates no significant difference (P > 0.05)

Fig. 6
figure 6

Nonparametric bootstrapped difference test

Bootstrapped difference test for node expected influences. The black boxes indicate node expected influences that do differ significantly from one another (P < 0.05), while the gray boxes indicate node expected influences that don?t differ significantly (P > 0.05)


To our best knowledge, this was the first study to construct network model of burnout and depressive symptoms among ICU nurses at the late stage of COVID-19. The mean age of the participants was 28 years. The finding was similar to a cross-sectional survey showing the age of 26 years in ICU nurse of China [54], but lower than the average age of 39 years and 44 years reported in Italy and USA, respectively [55, 56]. Furthermore, WHO reported nurses with an average aged of 41 to 50 are the main force in this team from an international study of 106 countries [57]. The discrepancy for the difference may be due to lacking promoting professional development and leadership opportunities of nurses in China at present, resulting in shifting to administrative units in hospitals for senior nurses, such as those involved in nutrition, laundry positions, etc. [58].

The score of burnout symptoms of ICU nurses indicated that the prevalence of burnout was 48.2%, which was in keeping with the prevalence (45%) of burnout reported by a meta-analysis in ICU nurses during COVID-19 [15]. Besides, participants reported a high prevalence (64.1%) of depressive symptoms. It was similar to the depression rate (65.5%) of ICU nurses reported in a study with a structural equation model during COVID-19 pandemic [59]. The findings implied that it is essential to pay attention to the mental problems of this special population. Furthermore, it is suggested to allocate human resources based on their psychological conditions for hospital management personnel.

In the burnout symptoms, the three highest relations were “Indifferent” - “Doubt significance”, “Less interested”- “Less enthusiastic” and “Exhausted”- “Used up”. The finding was consistent with our previous research used network analysis discussing the associations between burnout and neuroticism. For “Indifferent”-“Doubt significance” and “Exhausted”-“Used up” in our network models, Chen et al. reported the strong relations of “Exhausted”-“Used up” and “Contributing”–“Good at the job” in exploring the connections between burnout and mental health among medical staff [60].The former was consistent with our studies. The results implied the heavy psychological burden among ICU nurses during COVID-19. The latter difference could be explained for issues such as lower social status of ICU nurses and insufficient respect from patients and society relative to medical counterparts [61, 62], and thus they were indifferent for contribution and doubted the significance of nursing occupation. For “Less interested”-“Less enthusiastic”, lack of interest toward work was associated with decreased enthusiasm during caring for patients [63].

In the depressive symptoms, the three highest relations were “Sad mood”-“Anhedonia”, “Fatigue”-“Anhedonia” and “Motor”-“Concentration”, which were in according with the findings of previous studies exploring the interrelationships between depression and other variables in medical staff during the COVID-19 pandemic [64,65,66]. However, one study found the relation between “Concentration” and “Suicide” weighed the highest [67]. The inconsistent result could be explained for different stages and professions. For the late stage of the epidemic, strict public health measures were canceled and healthcare workers saw the hope to conquer COVID-19, which gave rise to the stronger relationships between “Anhedonia” and “Sad mood” comparing to “Concentration” and “Suicide” in the network. For “Sad mood”-“Anhedonia” and “Fatigue”-“Anhedonia”, although our study conducted at the late stage of COVID-19, the mental and physical burden achieved highest because of sudden increased patients in ICU, which led to high levels of fatigue and then gave rise to feeling of anhedonia [68]. Besides, many ICU nurses also suffered from cough and fever owing to effecting by COVID-19 and had to keep working in their station because large number of patients were needed to care, which made nurses ICU having a sad mood, and caused anhedonia. As to “Motor”- “Concentration”, overload work and lack of communication with ICU patients led to showing psychomotor symptoms and lacking concentrations when caring patients in ICU nurses.

Within the depression-burnout symptoms, “Fatigue”-“Used up”, “Anhedonia”-“Less enthusiastic” and “Fatigue”-“Breakdown” weighted the strongest associations. For “Fatigue”-“Used up” and “Fatigue”-“Breakdown”, it was obvious fatigue was significantly related with emotional exhaustion (i.e., “Used up” and “Breakdown”). The relevant review in nurses reported the correlation of emotional exhaustion dimension in burnout was highest compared to others [27]. Furthermore, one literature suggested emotional exhaustion prevention should be paid more attention to relieve the fatigue of individuals, which could be achieved by better worktime and shift planning [69]. For “Anhedonia”-“Less enthusiastic”, excessive workload, such as irregular working hours, voluntary overtime, and closed contact with patients in ICU made nurses lose interest and enthusiastic in work tasks, thus to increase their inactive in working [8].

Expected influence (EI) of nodes performed well in recognizing specific symptoms that contributed strongly to the whole psychopathology symptom network. In this study, “Used up”, “Stressed” and “Less enthusiastic”, displayed the high EI in burnout-depression network. It meant these symptoms were critical and influential to understand the structure in burnout and depression model. A study reported a high risk of emotion exhaustion (38%) among ICU nurses in Belgium during pandemic [32], and this rate of emotional exhaustion in ICU nurses was more serious than other departments [70]. Furthermore, studies exploring the relations between burnout and depression showed that the correlation between emotional exhaustion and depression was higher compared to other relations [27]. The primary factors came from a higher ratio of patient-to-nurse in ICU than standard contract, prolonged working hours, and risks of transferring the infection to family members [71], which increased the risk of emotional exhaustion in ICU nurses. Regarding the above identified symptoms, some approaches were suggested. For example, establishing a reward system within ICU to ensure all nurses are rewarded and paid for their work equally [72]. Other strategies, such as enriching oneself, work-life balance schedule, and relaxed activity will be beneficial in reducing emotional exhaustion among ICU nurses [73, 74]. Furthermore, among those symptoms, the symptoms of “Used up” and “Stressed” were emotion exhaustion dimension of burnout. We have found “fatigue” was significantly related with emotional exhaustion in the burnout-depression symptoms. Thus, taking intervention targeting the symptom of “fatigue” will be effective to reduce the severity of burnout and depression symptoms of ICU nurses.

Predictability in the network model is used to indicate to what extent the variation of a node can be predicted by the variation of its connected nodes. The average predictability identified in each node reached 0.67, which suggested on average of 67% of variance of each node could be explained by their neighbor nodes. Thus, symptoms of “Used up”, “Stressed” and “Less enthusiastic” discovered in this study spotlighted the psychiatric health of ICU nurses.

For bridge symptom in the current network, the highest bridge expected influence was “Fatigue”, followed by “Breakdown” and “Used up”, indicating that these symptoms were critical to maintain the entire network model and target for intervention [37]. Previous literature had reported that symptom of “Fatigue” was a bridge symptom in relevant network analysis [24]. Suffering from fatigue was common among medical staff during the COVID-19 pandemics [75], and might resulted from high workload pressure and fear of contagion [75, 76]. “Breakdown” and “Used up” were identified as other key bridge symptoms. Maybe because these two symptoms were the consequence of “fatigue”. The evidence came from that edges of “Fatigue”-“Used up” and “Fatigue”-“Breakdown” showed highest correlations in the burnout-depression symptoms. It was well known that stress disorders had always been more prevalent among ICU nurses [77, 78]. Nurses working in ICU needed to copy with complicated and critical situations quickly and accurately [79, 80], and they also encountered much moments with separating and death than other department nurses in hospitals, which could further worsen their mental and physical fatigue. Especially, as the Chinese government lifted the restrictions implemented for “Zero-COVID” policy at the late stage of COVID-19, the number of severe COVID-19 patients were sent to ICUs for treatment, which placed extremely huge burden and overwhelmed nurses in ICU. Therefore, the current mental disorders in ICU nurses were worse than ever before.

Previous studies have shown that nurses working in specialized units such as ICU suffered from high levels of psychological and psychical tiredness [81]. Hence, interventions targeting “fatigue” of ICU nurses might reduce the severity of related symptoms. Related psychological interventions can improve the fatigue effectively, such as cognitive behavior therapy (CBT) [82], which is viewed as the first line of intervention thanks to its availabilities and effectiveness [83]. Besides, the nurse leaders can alleviate “fatigue” by shortening the shift length and overtime work of nursing staff during COVID-19 [84], and thus to lower the high level of burnout and depression among ICU nurses. It will be economic to design and implement related courses of fatigue and mental health during the initial and continuing education for nurses for ministry of education in China, which can help nurses identify and take timely intervene for fatigue symptom.

In general, exploring the highest centrality and bridge symptoms in the burnout and depression network was beneficial to take targeting interventions, and have far-reaching implications for reducing, identifying and prevention burnout and depression in ICUs nurses. Although the COVID-19 maybe has weakened in many countries, the infectious disease will never disappear in the world. Therefore, the current study provided advices or new thought to prevent and relieve the mental problems for nurse in ICU.

So far as we knew, this was the first study to visualize the relations between burnout and depression symptoms via network analysis among ICUs nurses in China at the late stage of COVID-19. However, some limitations should be noted. First, the causal relationships couldn’t be assessed as a result of a cross-sectional study. Second, the central symptoms and bridge symptoms identified in this study may not be generalized to other healthcare workers. Third, for the risk of contagion during the pandemic and closed management in ICUs, the data were collected by self-report measures by electronic questionnaires, which may cause bias.


Despite the constraints above, the present study used network analysis to explore the complex relationship between burnout and depression in ICU nurses. The prevalence of burnout and depressive symptoms were high. The symptom of PHQ4(Fatigue) of depression was the bridge to connect the emotion exhaustion of burnout. The finding helps us to detect mental problems more effective and provides potential target for intervention for mental disorders in ICU nurses. Further studies are expected to monitor the fatigue quantitatively and explore personalized interventions based on the level of fatigue and in ICU nurses.

Data availability

The data that supported this research was available and can be obtained by from the corresponding authors. For the protection of privacy and ethics restriction, the data cannot be public available.



Network analysis


Maslach Burnout Inventory-General Survey


9-item Patient Health Questionnaire


World Health Organization


Acute respiratory distress syndrome


Intensive Care Units


Burnout syndrome


Least absolute shrinkage and selection operator


Extended Bayesian information criterion


Expected influence


Bridge expected influence


Correlation stability coefficients


Cognitive behavior therapy


  1. Hui DS, Azhar EI, Madani TA, Ntoumi F, Kock R, Dar O, et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health-the latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis. 2020;91:264–6. Epub 2020 Jan 14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. World Health Organization. WHO announces COVID-19 outbreak a pandemic [Internet]. 2020 [cited 2022 May 12]. Available from:

  3. Baud D, Qi X, Nielsen-Saines K, Musso D, Pomar L, Favre G. Real estimates of mortality following COVID-19 infection. Lancet Infect Dis. 2020;20(7):773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Murthy S, Gomersall CD, Fowler RA. Care for critically ill patients with COVID-19. JAMA. 2020;323(15):1499–500.

    Article  PubMed  Google Scholar 

  5. National Health Commission of the People’s Republic of China (NHCPRC) Notice on further optimizing and implementing the prevention and control measures for the COVID-19. (2022). Available at:

  6. WHO. State of the world’s nursing report 2020: executive summaries. Retrieved from

  7. Shen X, Zou X, Zhong X, Yan J, Li L. Psychological stress of ICU nurses in the time of COVID-19. Crit Care. 2020;24(1):1–3.

    Article  Google Scholar 

  8. Moradi Y, Baghaei R, Hosseingholipour K, Mollazadeh F. Challenges experienced by ICU nurses throughout the provision of care for COVID-19 patients: a qualitative study. J Nurs Adm Manag. 2021;29(5):1159–68.

    Article  Google Scholar 

  9. Pan X, Xiao Y, Ren D, Xu Z, Zhang Q, Yang L, et al. Prevalence of mental health problems and associated risk factors among military healthcare workers in specialized COVID-19 hospitals in Wuhan, China: a cross-sectional survey. Asia Pac Psychiatry. 2022;14(1):e12427. Epub 2020 Oct 21.

    Article  PubMed  Google Scholar 

  10. Dos Santos DS, Vieira da ST, Gomes Alexandre AR, Antunes F, Zeviani, Brêda. Cícera Dos SdA, Leão De NM. Depression and suicide risk among nursing professionals: an integrative review. Rev Esc Enferm USP. 2015;49(6):1023–31.

    Article  Google Scholar 

  11. El-Hage W, Hingray C, Lemogne C. Depression and suicide risk among nursing professionals: an integrative review: what are the mental health risks? Encephale. 2020;46(3S):S73–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen J, Li J, Cao B, Wang F, Luo L, Xu J. Mediating effects of self-efficacy, coping, burnout and social support between job stress and mental health among Chinese newly qualified nurses. J Adv Nurs. 2020;76(1):163–73.

    Article  PubMed  Google Scholar 

  13. Maqbali M, Sinani M, Lenjawi B. Prevalence of stress, depression, anxiety and sleep disturbance among nurses during the COVID-19 pandemic: a systematic review and meta-analysis. J Psychosom Res. 2021;14(110343):1–18.

    Article  Google Scholar 

  14. Heesakkers H, Zegers M, van Mol MMC, van den Boogaard M. The impact of the first COVID-19 surge on the mental well-being of ICU nurses: a nationwide survey study. Intensive Crit Care Nurs. 2021;65:103034.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Laurent Papazian1, Hraiech S, Loundou A, Herridge MS. Laurent Boyer. High-level burnout in physicians and nurses working in adult ICUs: a systematic review and meta-analysis. Intensive Care Med. 2023;49:387–400.

    Article  Google Scholar 

  16. Guillén-Astete C, Penedo-Alonso R, Gallego-Rodríguez P. Levels of anxiety and depression among emergency physicians in Madrid during the SARS-CoV-2 pandemic. Emergencias. 2020;32(5):369–71.

    PubMed  Google Scholar 

  17. O’Callaghan EL, Lam L, Cant R, Moss C. Compassion satisfaction and compassion fatigue in Australian emergency nurses: a descriptive cross-sectional study. Int Emerg Nurs. 2020;48:100785.

    Article  PubMed  Google Scholar 

  18. Stehman CR, Testo Z, Gershaw RS, Kellogg AR. Burnout, drop out, suicide: physician loss in emergency medicine, part I. West J Emerg Med. 2019;20:485–94. 13548506.2014.936889.

  19. World Health Organization. World alliance for patient safety: the forward program 2005.

  20. Ulupınar F, Erden Y. Intention to leave among nurses during the COVID-19 outbreak: a rapid systematic review and meta-analysis. Journal of Clinical Nursing.2022; 1–11. Availabe from:

  21. Chutiyami M, Cheong AMY, Salihu D, Bello UM, Ndwiga D, Maharaj R et al. COVID-19 pandemic and overall mental health of healthcare professionals globally: a meta-review of systematic reviews. Frontiers in Psychiatry. 2022; 12:804525.

  22. ICD-11. International classification of diseases–eleventh revision. World Health Organ.2022.

  23. Abbas A, Ali A, Shouman W, Bahgat SM. Prevalence, associated factors, and consequences of burnout among ICU healthcare workers: an Egyptian experience. Egypt J Chest Dis Tuberc. 2019;68(4):514.

    Article  Google Scholar 

  24. WHO.Depression. World Health Organization. 2022. = tab_1.

  25. Hadi SA, Bakker AB, Häusser JA. The role of leisure crafting for emotional exhaustion in telework during the COVID-19 pandemic. Anxiety Stress Coping. 2021;34:530–44.

    Article  PubMed  Google Scholar 

  26. Sarfraz M, Hafeez H, Abdullah MI, lvascu L, Ozturk I. The effects of the COVID-19 pandemic on healthcare workers’ psychological and mental health: the moderating role of felt obligation. Work. 2022;71:539–50.

    Article  PubMed  Google Scholar 

  27. Chen CH, Scott TM. Burnout and depression in nurses: a systematic review and meta-analysis. Int J Nurs Stud. 2021;124:104099.

    Article  PubMed  Google Scholar 

  28. Pereira-Lima K, Loureiro SR. Burnout, anxiety, depression, and social skills in medical residents. Psychol Health Med. 2015;20(3):353–62.

    Article  CAS  PubMed  Google Scholar 

  29. Lluch C, Galiana L, Domenech P, Sanso N. The impact of the COVID-19 pandemic on burnout, compassion fatigue, and compassion satisfaction in healthcare personnel: a systematic review of the literature published during the first year of the pandemic. Healthcare. 2022;10(2):364.

    Article  PubMed  PubMed Central  Google Scholar 

  30. McCade D, Frewen A, Fassnacht DB. Burnout and depression in Australian psychologists: the moderating role of self-compassion. Aust Psychol. 2021;56(2):111–22.

    Article  Google Scholar 

  31. Serrão C, Rodrigues AR, Teixeira A, Castro L, Duarte I. The impact of teleworking in psychologists during COVID-19: burnout, depression, anxiety, and stress. Front Public Health. 2022;3(10):984691.

    Article  Google Scholar 

  32. Bruyneel A, Smith P, Tack J, Pirson M. Prevalence of burnout risk and factors associated with burnout risk among ICU nurses during the COVID-19 outbreak in French speaking Belgium. Intensive Crit Care Nurs. 2021;65(103059):1–7.

    Article  Google Scholar 

  33. Koutsimani P, Montgomery A, Georganta K. The relationship between burnout, depression, and anxiety: a systematic review and meta-analysis. Front Psychol. 2019;10:284.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zheng Y, Tang PK, Lin G, Liu J, Hu H, Man SW, Oi LU. Burnout among healthcare providers: Its prevalence and association with anxiety and depression during the COVID-19 pandemic in Macao, China. PLoS One. 2023; 16:18(3): e0283239. eCollection 2023.

  35. Alkhamees A, Assiri H, Alharbi H, Nasser A, Alkhamees M. Burnout and depression among psychiatry residents during COVID-19 pandemic. Hum Resour Health. 2021;19:46.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tang Y, Zhang L, Li Q. Application of neural network models and logistic regression in predicting chronic obstructive pulmonary disease. Public Health Prev Med. 2021;32(2):1216. 10.3969/. j. issn. 10062483.2021.02003.

    Google Scholar 

  37. Bringmann LF, Elmer T, Epskamp S, Krause RW, Schoch D, Wichers M, et al. What do centrality measures measure in psychological networks? J Abnorm Psychol. 2019;128:892–903.

    Article  PubMed  Google Scholar 

  38. Jones P, Ma R, McNally R. Bridge centrality: a network approach to understanding comorbidity. Multivar Behav Res. 2021;56:353–67.

    Article  Google Scholar 

  39. Vanzhula IA, Kinkel-Ram SS, Levinson CA. Perfectionism and difficulty controlling thoughts bridge eating disorder and obsessive-compulsive disorder symptoms: a network analysis. J Affect Disord. 2021;283:302–9.

    Article  PubMed  Google Scholar 

  40. Verkuilen J, Bianchi R, Schonfeld IS, Laurent E. Burnout depression overlap: exploratory structural equation modeling bifactor analysis and network analysis. Assessment. 2021;28:1583–600.

    Article  PubMed  Google Scholar 

  41. Verkuilen J, Bianchi R, Schonfeld I, Laurent E. Burnout–depression overlap: exploratory structural equation modeling bifactor analysis and network analysis. Assessment. 2021;28:1583–600.

    Article  PubMed  Google Scholar 

  42. He M, Li K, Tan X, Zhang L, Su C, Luo K, et al. Association of burnout with depression in pharmacists: a network analysis. Front Psychiatry. 2023;14:1145606.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Luo H, Lie Y, Prinzen FW. Surveillance of COVID-19 in the general population using an online questionnaire: report from 18,161 respondents in China. JMIR Public Health Surveill. 2020;27(6):e18576.

    Article  Google Scholar 

  44. Zhou J, Liu L, Xue P, Yang X, Tang X. Mental health response to the COVID-19 outbreak in China. Am J Psychiatry. 2020;177:574–5. Epub 2020 May 7.

    Article  PubMed  Google Scholar 

  45. West CP, Dyrbye LN, Sloan JA, Shanafelt TD. Single item measures of emotional exhaustion and depersonalization are useful for assessing burnout in medical professionals. J Gen Intern Med. 2009;24:1318–21.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Shanafelt TD, Boone S, Tan L, Dyrbye LN, Sotitle W, Satele D, et al. Burnout and satisfaction with work-life balance among US physicians relative to the general US population. Arch Intern Med. 2012;172:1377.

    Article  PubMed  Google Scholar 

  47. Wang XQ, Chen PJ. Population ageing challenges health care in China. Lancet. 2014;383(9920):870.

    Article  PubMed  Google Scholar 

  48. Kroenke K, Spitzer RL, Williams JBW. The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med. 2001;16:606–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. R Core Team. R: a Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2020.

    Google Scholar 

  50. Epskamp S, Fried EI. A tutorial on regularized partial correlation networks. Psychol Methods. 2012; 23:617–34. Doi: 10.1037/met0000167 Qgraph: network visualizations of relationships in psychometric data. J. Stat. Softw.1 (4), 2012.

  51. Epskamp S, Borsboom D, Fried E. Estimating psychological networks and their accuracy: a tutorial paper. Behav Res Methods. 2018;50:195–212.

    Article  PubMed  Google Scholar 

  52. McNally R. Can network analysis transform psychopathology? Behav Res Ther. 2016;86:95–104.

    Article  PubMed  Google Scholar 

  53. Cramer A, Waldorp L, van der Maas H, Borsboom D. Comorbidity: a network perspective. Behav Brain Sci. 2010;33:137–50.

    Article  PubMed  Google Scholar 

  54. Chi X, Guo J, Niu X, He R, Wu L, Xu H. Prevention of central line-associated bloodstream infections: a survey of ICU nurses’ knowledge and practice in China. Antimicrob Resist Infect Control. 2020;9:186.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sannino P, Giannì ML, Carini M, et al. Moral distress in the pediatric intensive care unit: an Italian study. Front Pediatr. 2019;7:338.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Fitzpatrick JJ, Campo TM, Graham G, Lavandero R. Certification, empowerment, and intent to leave current position and the profession among critical care nurses. Am J Crit Care. 2010;19(3):218–26.

    Article  PubMed  Google Scholar 

  57. WHO. State of the world’s nursing 2020: investing in education, jobs and leadership. Geneva: World Health Organization; 2020. pp. 17–42.

    Google Scholar 

  58. Zhan Qimin S, Shaomei L, Wenkai C. Bridging the GP gap: nurse practitioners in China. Lancet. 2019;394(10204):1125–7.

    Article  CAS  PubMed  Google Scholar 

  59. Kandemir D, Temiz Z, Ozhanli Y, Erdogan H, Kanbay Y. Analysis of mental health symptoms and insomnia levels of intensive care nurses during the COVID-19 pandemic with a structural equation model. J Clin Nurs. 2022;31(5–6):601–11.

    Article  PubMed  Google Scholar 

  60. Chen C, Li F, Liu C, Li K, Yang Q, Ren L. The relations between mental well-being and burnout in medical staff during the COVID-19 pandemic: a network analysis. Front Public Health. 2022;10:919692doi.

    Article  Google Scholar 

  61. Liu J, Zheng J, Liu K, Liu X, Wu Y, Wang J, You L. Workplace violence against nurses, job satisfaction, burnout, and patient safety in Chinese hospitals. Nurs Outlook. 2019;67:558–66.

    Article  PubMed  Google Scholar 

  62. Zhang L, Wang A, Xie X, Zhou Y, Li J, Yang L, Zhang J. Workplace violence against nurses: a cross-sectional study. Int J Nurs Stud. 2017;72:8–14.

    Article  PubMed  Google Scholar 

  63. Ren Z, Zhang X, Li X, He M, Shi H, Zhao H, et al. Relationships of organizational justice, psychological capital and professional identity with job burnout among Chinese nurses: a cross-sectional study. J Clin Nurs. 2021;30:2912–23.

    Article  PubMed  Google Scholar 

  64. Peng P, Chen Q, Liang M, Liu Y, Chen S, Wang Y, et al. A network analysis of anxiety and depression symptoms among Chinese nurses in the late stage of the COVID-19 pandemic. Front Public Health. 2022;10:996386.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Jin Y, Sha S, Tian T, Wang Q, Liang S, Wang Z, et al. Network analysis of comorbid depression and anxiety and their associations with quality of life among clinicians in public hospitals during the late stage of the COVID-19 pandemic in China. J Effective Disorders. 2022;314:193–200. Epub 2022 Jun 30.

    Article  Google Scholar 

  66. Bai W, Zhao Y, Cai H, Sha S, Zhang Q, Lei S, et al. Network analysis of depression, anxiety, insomnia and quality of life among Macau residents during the COVID-19 pandemic. J Effective Disorders. 2022;311:181–8.

    Article  CAS  Google Scholar 

  67. Cai H, Zhao Y, Xing X, Tian F, Qian W, Liang S et al. Network Analysis of Comorbid Anxiety and Insomnia Among Clinicians with Depressive Symptoms During the Late Stage of the COVID-19 Pandemic: A Cross-Sectional Study. Nature and Science of Sleep. 2022; 14:1351–1362. eCollection 2022.

  68. Carla S, Ivone De, Luisa C, Teixeira A. Burnout and depression in Portuguese Healthcare Workers during the COVID-19 pandemic—the mediating role of psychological resilience. Int J Environ Res Public Health. 2021;18:636.

    Article  Google Scholar 

  69. Vinnikov D, Kapanova G, Romanova Z, Krugovykh I, Kalmakhanov S, Ualiyeva A, et al. Occupational burn-out, fatigue and stress in professional rescuers: a cross-sectional study in Kazakhstan. BMJ Open. 2022;12(6):e057935.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Butera S, Brasseur N, Filion N, Bruyneel A, Smith P. Prevalence and associated factors of burnout risk among intensive care and emergency nurses before and during the coronavirus disease 2019 pandemic: a cross-sectional study in Belgium. J Emerg Nurs. 2021;47:879–91.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Lai J, Ma S, Wang Y, Cai Z, Hu J, Wei N, et al. Factors associated with mental health outcomes among health care workers exposed to coronavirus disease 2019. JAMA Netw Open. 2020;3(3):e203976.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Nawal A, K LB, Alkhatib A, Xyrichis A. Factors that contributed to burnout among intensive care nurses during the COVID-19 pandemic in Saudi Arabia: a constructivist grounded theory. Australian Crit Care. 2023;36:19–27. Epub 2022 Nov 9.

    Article  Google Scholar 

  73. Roberts W. Wellness and life balance for sports medicine physicians: recognizing physician burnout. Curr Sports Med Rep. 2022;19:50–2.

    Article  Google Scholar 

  74. Chisholm-Burns M. Building resilience to combat stress, burnout, and suicidal ideation among pharmacists. Am J Health Syst Pharm. 2019;7:1364–7.

    Article  Google Scholar 

  75. Pappa S, Ntella V, Giannakas T, Giannakoulis VG, Papoutsi E, Katsaounou P. Prevalence of depression, anxiety, and insomnia among healthcare workers during the COVID-19 pandemic:a systematic review and meta-analysis. Brain Behav Immun. 2022;88:901–7.

    Article  CAS  Google Scholar 

  76. Huang Y, Zhao N. Generalized anxiety disorder, depressive symptoms and sleep quality during COVID-19 outbreak in China: a web-based cross-sectional survey. Psychiatry Res. 2020;288:112954. Epub 2020 Apr 12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Poncet MC, Toullic P, Papazian L, Kentish-Barnes N, Timsit JF, Pochard F, et al. Burnout syndrome in critical care nursing staff. Am J Respir Crit Care Med. 2007;175:698–704.

    Article  PubMed  Google Scholar 

  78. Mealer ML, Shelton A, Berg B, Rothbaum B, Moss M. Increased prevalence of post-traumatic stress disorder symptoms in critical care nurses. Am J Respir Crit Care Med. 2017;175:693–7. Epub 2006 Dec 21.

    Article  Google Scholar 

  79. Tokur ME, Ergan B, Aydın K, Caliskan T. Depression and burnout frequency in nurses working in tertiary intensive care units. J Crit Intensive Care. 2018;9(2):25–33.

    Article  Google Scholar 

  80. Lakanmaa RL, Suominen T, Ritmala-Castren M, Vahlberg T, Leino-Kilpi H. Basic competence of intensive care unit nurses: cross-sectional survey study. Biomed Res Int. 2015;12:536724.

    Article  Google Scholar 

  81. Soares JP, Oliveira NH, Mendes TD, Ribeiro SDS, Castro JLD. Burnout-related factors in health professionals during the COVID-19 pandemic: an integrative review. Saude Em Debate. 2022;46(1):385–98.

    Article  Google Scholar 

  82. Mitchell LJ, Bisdounis L, Ballesio A, Omlin X, Kyle SD. The impact of cognitive behavioural therapy for insomnia on objective sleep parameters: a meta-analysis and systematic review. Sleep Med Rev. 2019;47:90–102.

    Article  PubMed  Google Scholar 

  83. van de Zweerde T, Bisdounis L, Kyle SD, Lancee J, van Straten A. Cognitive behavioral therapy for insomnia: a meta-analysis of long-term effects in controlled studies. Sleep Med Rev. 2019;48:101208.

    Article  PubMed  Google Scholar 

  84. Bell T, Sprajcer M, Flenady T, Sahay A. Fatigue in nurses and medication administration errors: a scoping review. J Clin Nurs. 2023;32(17–18):5445–60.

    Article  PubMed  Google Scholar 

Download references


The authors would like to express their gratitude to all professional societies and hospitals who supported us and kindly distributed our survey among ICU nurses.


We acknowledge the financial support from the National Natural Science Foundation of China (72101262), Science and Technology of Shaanxi Provincial Department Projects Fund(2023-YBSF-616), Education Department of Shaanxi Province Project Fund(22JK0343) and the Development Mechanism and Adjustment Strategy of Nursing Staff Burnout in the post-epidemic Era (2023KXKT018).

Author information

Authors and Affiliations



YZ(Yinjuan Zhang), CW(Chao Wu), WH(Wendong Hu), ZM(Zhujing Ma) and HL(Hongjuan Lang) designed the method of current study. CW and JS(Jicheng Sun) were in charge of collecting and analyzing data of participants. CS(Chao Shen) was responsible for algorithm and visualization of network analysis. YZ, JM(Jin Ma) and CW wrote the original manuscript. ZM and FL(Fang Liu)proposed suggestions for publication. All authors contributed to revising and approved the final version of the paper.

Corresponding authors

Correspondence to Wendong Hu or Hongjuan Lang.

Ethics declarations

Ethics approval and consent to participate

The study adhered to the Declaration of Helsinki, and the protocol was approved by the Ethics Committee of the Second Affiliated Hospital of Shaanxi University of Chinese Medicine (No. SZFYIEC-YJ-2020-38). The questionnaire was completed online in the WeChat application after informed consent was obtained.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no conflicts of interest.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wu, C., Ma, J. et al. Relationship between depression and burnout among nurses in Intensive Care units at the late stage of COVID-19: a network analysis. BMC Nurs 23, 224 (2024).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: