Within this study, and similar to other published work, it was evident that students felt simulation was an educational tool capable of simulating real clinical situations in a safe environment, which enabled them to develop cognitive, psychomotor and affective skills [22,23,24,25,26,27]. Furthermore, supporting students to become critical thinkers, independent decision-makers, lifelong learners, effective team members and competent users of new information technologies [28]. Within students’ learning experiences, the sense of safety is important as it allows students to practice and correct their mistakes without risks to patients and with minimal risk to themselves [29]. Thus, simulation allows for development and exchange of ideas, teamwork and team leadership, creative thinking and problem-solving situations that focus on engagement and motivation of the learner [23, 27, 30,31,32,33]. Given the high agreement level achieved in the SET-M in this study it is anticipated that simulation prepares students for their future practice roles.
Most nursing and midwifery education programmes require students to complete a clinical internship in healthcare settings to gain practical experience and integrate knowledge and clinical skills. This experience is considered a transition from academic education to a professional career [5] and during this transition, students often lack confidence and this affects their ability to work in the complex healthcare field [34]. Transitioning to nursing or midwifery practice is recognised as challenging [34,35,36,37]. In contemporary times, safety concerns such as the covid-19 pandemic and increasingly complex dynamic healthcare environments, have resulted in restricted or reduced opportunities for nursing and midwifery student experiences [38]. These limitations impact nursing and midwifery students’ abilities to engage in learning opportunities that support the development and advancement of the skills needed for their future practice such as delegation, prioritisation, care management, independent decision-making and interprofessional collaboration [39]. Thus, preparing the next generation of graduating nurses/midwives requires innovative and transformative educational experiences [36, 39], to overcome the transitional challenges that lie ahead. Simulation-based education is one solution which places nursing and midwifery students in a position of leadership to independently assess, make decisions, and manage all aspects of patient care, nurturing strong assessment skills, clinical judgment skills, delegation, prioritisation, and time management [34, 35, 37, 39, 40]. This was evident in this study, by the high level of agreement for teamwork and decision making (98.5%) and management skills (95.5%). Exposure to simulation-based education has an important role in grounding students’ experiences and preparing them for the transition to their future nursing and midwifery roles. Thus, addressing the anticipated ‘reality shock’ which is known to occur during transition.
There is ample evidence in the literature that simulation-based education is a creative and engaging strategy that is increasingly incorporated into nursing and midwifery curricula internationally [1, 41, 42]. Simulation is a dynamic opportunity for integrating interactive learning strategies, problem-based learning and case-based learning [43], which enables students to gain the confidence, knowledge and skills required for their current and future practice [44] in a non-threatening, safe environment [45]. Thus, creating an environment that supports students with a transformative learning experience, is particularly important for those transitioning to real-life clinical practice. Fundamental to successful integration of simulation-based education are careful planning, preparation and adherence to internationally recognised best practices standards regarding design, implementation and facilitation. For successful learning to occur, simulations should be planned in a way that takes cognisance of the complexity of practice scenarios and demands in practice, in a manner that supports students in acquiring skills gradually [46]. Within the planning of scenarios, a co-creation philosophy with stakeholders is important, one that takes account of the facilitators, students and clinical partners’ perspectives in attempt to improve the clinical integrity of the scenarios, which subsequently can be adjusted to the learner’s level of development [47, 48]. This is essential given that the quality of care expected by patient safety standards and citizens themselves require a high level of professional qualifications, skills and safety to promote the welfare of society [49]. Similarly, the education, preparation and skills of those facilitating simulation and the dynamics of the relationship between facilitator and students needs to be recognised [50]. In this study, cognisant of the importance of planning, stakeholder engagement was an important aspect in the design and development of the scenarios used within the simulation-based learning experiences. This engagement process created and ensured fidelity and authenticity as close as possible to the real world experience.
Evident within this study was the importance of the pre-briefing and debriefing in the overall student learning process. Pre-briefing and debriefing are considered essential features of any formal, structured simulation-based learning experience [41, 51] and the recently published Healthcare Simulation Standards of Best Practice™ [13] highlight their importance in the evidence-based guidelines for best practice standards in simulation. Pre-briefing relates to the preparation and briefing that students’ receive in advance of the simulation-based learning experience [51]. Successful pre-briefing enables students to approach their learning experiences with clear instruction regarding their role and performance expectations, and in addition it generates an awareness for students around ground rules. Debriefing, in this educational context, refers to a planned facilitator-guided process usually carried out immediately after the event, and can include a range of activities such as providing feedback, discussion and guided reflection [52]. Effective debriefing allows students the opportunity to explore emotions and experiences in a professional environment to better understand concepts, ideas, or behavioural insights [53]. Pre-briefing and debriefing are particularly important in simulation-based education, as similar to any experiential-based learning strategy, learning is dependent on bridging the actual experience and the cognitive insights associated with that, in order to create a meaningful learning experience and to identify knowledge gaps and potential areas of future development for the learner [1, 52, 53]. Such a formalised teaching approach ensures formality, structure and support around simulation design and implementation, which in turn helps to champion its integration within nursing and midwifery curricula. Internationally, equal weighing is given to both theory and practice within nursing and midwifery educational curricula, therefore emphasising the necessity to provide authentic experiences within the delivery of the theoretical elements of curricula is important and simulation-based education can offer opportunities here. This approach enables the theory to be grounded and translated to practice and can be provided across all nursing and midwifery skills e.g., technical and non-technical skills.
To promote a comprehensive standard of practice in simulation-based education, it is important that adequate time and attention is afforded to simulation design and implementation. As with all educational strategies, these processes need to be grounded in theoretical frameworks and/or evidence-based concepts and ideally facilitated by those experienced in simulation-based education [54, 55]. While students in this study indicated they were in favour of participating in future simulation-based learning experiences, it must be recognised that simulation requires a significant investment of time, money and resources [56]. To ensure the success of simulation-based education across nursing and midwifery programmes, a sustainable, cohesive strategic approach regarding the financial planning, provision of resources, and the education of simulation facilitators is needed.
Limitations
The limitations of this study are primarily related to the sample size and the fact that the study was conducted in a single institution. There was a good response rate of 70.5% for the survey, however, there were some limitations to data collection. The findings from the survey open-ended questions represent 26.86% (n = 18) of the 67 responses and this should be considered when interpreting results. It is important to emphasise that the study focussed on the students’ ‘perceptions’ of the impact of simulation and therefore it is difficult to claim any impact on their future practice. In addition, no pre/post-test design or control group to measure the impact were included in this study. However, validity in this study was addressed through the use of an existing tool with construct, content and criterion validity and internal reliability for the study was good. Further research with many participants and multiple settings/locations is needed to determine the effectiveness of simulation.